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Abstract. Four new Ramanujan pairs { ai }, { bj } are given along with the theorem that no 
such pairs exist with a, = 1 and a2 = s for any s > 5. All finite Ramanujan pairs are 
determined and their significance in bounding the local branching degree in the search tree for 
such pairs is discussed. The search techniques and programs that were used are also described. 
The parity of the coefficients in the power series is determined in two of the new identities. 
Partition interpretations of the six recent identities are also given. 

1. Introduction. (a) By a Ramanujan Pair (R.P.) we mean two infinite, increasing 
sequences of positive integers { a1 }, { b1 } for which (1) formally holds when the two 
sides are expanded into Maclaurin series: 

00 00 

(1) Hl (1 - xai)-l =1+ E Xbjl(l 
- X)(1 

_ 
x2) 

. 
(I Xj). 

i=1 j=1 

This definition is essentially the same as the one given by Andrews [3], except that 
here we use a single letter for the numerator exponent on the right side of (1) and 
explicitly require that the sequence { ai } be increasing. Also in [3], Andrews 
conjectured that the only R.P.'s were those listed in that paper. (These are entries 
1-4 in Table 1 below.) Shortly thereafter M. Hirschhorn [9] showed that this listing 
was actually incomplete by finding two more pairs-numbers 5 and 6 in Table 1. 

In our investigation we have discovered four more R.P.'s-entries 7-10 in Table 1 
-using a Fortran search program written for the Data General Eclipse S/230 at the 
Mathematics Department of the University of Arizona. (For the initial announce- 
ment of these results see Notices Amer. Math. Soc., Aug. 1982, p. 390.) As it 
happens, these four new pairs, as well as the two pairs of Hirschhorn, can easily be 
derived from six identities that have appeared previously in the literature, but in a 
form that disguises their connection with R.P.'s. In fact, the identities numbered 86, 
83, 94, 98, 96, and 99 in Slater [13] directly yield the identities associated with the 
pairs 5-10 when the general term on their right sides is written as a sum of two 
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TABLE 1 

Ramanujan Pairs (m > 1) 

{an), n >? Ibn} n >,1 

1. {m,m + 1,m + 2, ...} bn = nm 

2. {m, m + 1,m + 2, . . .,2m -1, 2m + 1, 2m + 3, ... bn = nm + (2 
- 

3. {m- +?(mod5)} bn =n 

4. {m +?2(modS)} bn = n(n + 1) 

b = 2n 2 -1i 
5. {m_ +1, +4, +6, +7(modl6)} b2 -2n(n + 1) 

6. {m- +2, +3, +4, +5 (modl6)} {bn~ = 2n2 b2n-12n~n1 

7. { m +1 +2 +5 + 6, 8, 9 (mod 2)} b2 n(n + 1) bn1= n(n + 1) 1 

8. {m- +1, +3, +4, +5,?+7,?+9(mod2O)} {b =l- 

9. {m= +1, +3, +59 +7,? 8, ?9(mod20)} b = n(n + 2)- 2 
b nn+ 2) 

10. {m-+ 2 +3 +3 4 +?5, +5 6 + 7 (mod 20)} ( bnn(n + 1) bn1= n(n + 3). 

fractions in an appropriate way. For example, identity 94 yields the identity 
associated with pair 7 by writing 

Xk(k+l) Xk(k+l) 

(I _ X)(1 _ X2) . (1 . X2k+1 (- X) .- (1 . xk) 

xk2+3k+1 

(1 X) ... (1 - X2k)(I _ X2k+l) 

(It should be mentioned that the {ai} sequences in pairs 5-10 appear in [11, p. 57] 
as well.) 

Although an R.P. in [3] is defined only for infinite sequences, we will discuss in 
Section 2 the question whether or not an equation of form (1) can ever be satisfied if 
one or both of {ai}, {bj} is finite. There we will find all such pairs and interpret 
their significance in terms of the structure of the search trees of possible new R.P.'s. 

In Section 3, we detail the search method we have developed, which creates and 
examines the search tree associated with the given starting values. The complete 
search tree for the starting values a, = 1, a2= 6 is given in Figure 11, both to 
illustrate our presentation of a search tree and to give the details to complete the 
nonexistence proof presented in Section 5. 

Section 4 contains the details of the various search programs we have used and the 
algorithms on which they are based. 



A COMPUTER-ASSISTED INVESTIGATION OF RAMANUJAN PAIRS 733 

Section 5 contains a nonexistence theorem stating that no R.P. begins with the 
starting values al = 1, a2 > 5, while Section 6 deals with modular R.P.'s. In 
particular, such pairs are discussed in detail for the moduli 2 and 3. The section also 
contains a general existence question and two conjectures that arise from consider- 
able computing. 

Section 7 presents a theorem that determines the parity of the coefficients in the 
series appearing in identities 7 and 10. The paper closes with Section 8 in which 
partition interpretations of identities 5-10 are given that are analogous to those 
previously given for the Rogers-Ramanujan identities. 

(b) In what follows, we will often use the {ai} sequence of an R.P. as the 
representative of the pair, since for a given {ai} sequence the corresponding {bj} 
sequence is uniquely determined. We will also classify the R.P.'s by their {ai} 
sequences, placing two such sequences in the same class if they have the same first 
term. Further, we will linearly order the sequences in each class by listing {ai} 
before { a'} if ar < a' at the first term where the two sequences disagree. When this 
is done with the known pairs, we find that there are seven with a, = 1, five with 

a, = 2, and two in each class with a, > 3. 
These classes are represented diagrammatically in the form of row-indented trees 

Figures 1-3 below. (The first sequence in each class will clearly be 1. in Table 1.) In 
each of these trees (where the consecutive terms in the given { a i} sequence are the 
nodes) every row past the first is considered to be connected by its first term to the 
nearest number in the preceding column in some row above. The rows are connected 
in no other way. 

Table 1 Number 

1 2 3 4 5 6 7 8 9 10 11 12 1. (m = 1) 
5 6 8 9 11 12 14 15 18 19 7. 

345 7 9111315 161719 8. 
5 7 8 9111213 15 1719 9. 

9 11 13 15 17 19 21 23 2. (m = 1) 
4 6 7 9 10 12 15 17 20 22 23 5. 

9 11 14 16 19 21 24 26 29 3. 
FIGURE 1. Tree for the first class 

2 3 4 5 6 7 8 9 10 11 12 13 1. (m = 2) 
13 14 15 16 17 18 10. 

11 1213 1418 192021 6. 
5 7 9 11 13 15 17 19 21 23 ... 2. (m = 2) 

7 8 12 13 17 18 22 23 27 28 4. 
FIGURE 2. Tree for the second class 

m m+l m+2 2m-1 2m 2m+1 2m+2 1.(m>3) 
2m+1 2m+3 2m+5 2. (m > 3) 

FIGURE 3. Tree for the other classes 

The question whether or not there are any other R.P.'s can now be expressed in 
terms of these trees by asking whether there is any other {a-} in an R.P. which 
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branches off of one of the known sequences at some point, i.e., it agrees with this 
{ ai } up to some term, but thereafter proceeds along a different sequence. 

A nearly complete solution to this question will be published elsewhere by the first 
author who has shown in [4] that the only R.P.'s are those listed in Table 1, except 
possibly for pairs that might branch off of sequence 1. in Table 1 for m < 4. Even in 
this case, considerable computing suggest there is no other R.P. 

It should be noted that Lehmer [10] and Alder [2] have previously shown that 
certain pairs do not exist, where the exponents of the R.H.S. of (1) are generated by 
certain quadratic polynomials in j. 

Finally, Acreman in his 1983 thesis [1] studied the coefficients on the two sides of 
(1) using asymptotic methods, an approach very different from our own. Using 
Hirschhorn's methods with the identities in [13] he obtained the R.P.'s 7. and 8., not 
knowing we had published these a year earlier in the Notices Amer. Math. Soc. 

2. Finite Ramanujan Pairs. In what follows we will use the familiar abbreviation 
(x)j for the product (1 - x)(1 - x2) ... (1 - xj). 

Definition 2.1. A pair of increasing sequences of positive integers { a1}iL { b };=1 
is called a finite Ramanujan Pair if the following equation holds: 

m 1n' X bj 

(2) H1 Xai 1i+ E 

It is clear that not just one of the sequences { a1 }, { bj } can be finite, for then x = 1 
would be a pole on one side of (2), but not on the other side. 

In our later discussion, it will be important to know what all the finite R.P.'s are. 
These we determine in the next theorem. 

THEOREM 2.2. The sequences { a }m, { bj}n1 are a finite Ramanujan Pair < m = 
n and ai = bi = i for each i 1 < i < n. 

Proof. ( =) This equation, which goes back to Euler [6], is readily established by 
induction on n. 

(=) When the fractions on the R.H.S. of (2) are added, we obtain a fraction with 
the form A(x)/[(l - x)nB(x)], where A(x), B(x) E Z[x] and A(1)B(l) 0 0. Thus, 
on the R.H.S. there is a pole of order n at x = 1. This implies there are exactly n 
factors 1 - Xai in the denominator on the L.H.S. of (2), so m = n. 

We next show that an < n; for, if an exceeded n, then the L.H.S. would have 
poles at the primitive anth roots of unity, while the R.H.S. would only have poles at 
the primitive k th roots of unity, with k < n. Thus, since { a} is an increasing 
sequence, it follows that ai= i for each i, 1 < i < n. That bi = ai follows by 
successively multiplying (2) through by (1 - x), (1 - x2), ... , (1 - Xn). LI 

This theorem asserts that if we have any pair of finite sequences { a } mL, { bj }7n 
other than those mentioned above, the infinite series on the two sides of (2) cannot 
agree to infinity, but will disagree at some first term whose degree we will call the 
discrepancy degree d = d(m, n). We will also refer to the highest degree assigned in 
either sequence at this particular stage as the assignment degree t, i.e., t= 
max{ am, bn}. 

Example 1. Let {(a }1 = {2, 3, 5) and { bj}1 = {2, 5). Then 

(1-X2)(1-X3)(1-X5) = 1 + x2 + X3 + X4 + 2X5 + 2x6 + 2X7 + ___, 
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while 
x2 5 

1 + ~+ (I 
= 1 + x 2 + xI + x4 + 2x5 + 2x6 + 3x7 +.. 1+ X 

_X 
2 

The coefficients in the two series first disagree at the 7th degree term, so d = d(3, 2) 
= 7, while the highest degree assigned in the sequences so far is t = a3 = b2 = 5. 

3. The Search Method. We begin the search for a new R.P. by choosing values for 

al, ..., am, based on the trees in Figures 1-3. The expansion of the product with 
these starting values gives the series 

m 00 

(3) HI 1/(1 - Xai) = E cim)xk 
k=O 

which forces the starting values for bl, .. ., by, b, <am, in (1), so that the series 
n 00 

(4) 1 + X (x) = (n)Xk 
j=1 k=O 

agrees with the series in (3) up to degree am. (Many choices for a, ..., am are, of 
course, impossible, because no corresponding b's exist for which the two series do 
agree up to degree am.) 

If the initial ai choices are those for a finite R.P. (see Theorem 2.2), then the two 
series already agree to infinity and we set d = 00. In what follows, however, we will 
not deal with this case any further. For any other initial choice, the two series will 
disagree at some degree d. We then try to extend the initial sequences so as to get 
the series in (3) and (4) to agree further. To do this, we can only make one of the 
following possible new assignments: am? 1= bn 1 = t for some t, where am < t < d 
(called an "a-b-assignment"), am,, = d if a(m) - (n)= -1 (an "a-assignment"), 
or bn = d if a(m) - /3(n) = 1 (a "b-assignment"). (Note that these latter two cases 
do not occur if la(m) - 13n)j > 1, since any new assignment of an a or b value can 
never increase the coefficient of a term where the assignment is made by more than 
1.) 

Following each of these possible assignments, there is a new discrepancy degree 
and finitely many new possible assignments. This process is continued until either 
all the alternatives lead to a dead end, or there is a continuation that survives to the 
end of a particular search, i.e., up to some prespecified degree. A branch comes to a 
dead end when the only remaining choice requires an assignment to be made at a 
degree where the difference of the coefficients at that degree exceeds one. It is clear 
from the preceding description that the structure of the search is a tree search, where 
the nodes are the actual assignments, with an infinite branch giving an R.P. For a 
tree with only finite branches, there is no R.P. beginning with the particular starting 
values. 

Example 2. Let a, = 1 and a2 = 3. Then b, = 1 and b2 = 3 are forced. We then 
have the following sequence of coefficients in (3) and (4) (Figure 4): 

k 0 1 2 3 4 5 k 0 1 2 3 4 5 

a(2)1 1 1 2 2 2 a(3)1 1 1 2 3 3 

B3(2) 1 1 1 2 2 3 /3(3) 1 1 1 2 3 4 

FIGURE 4 FIGURE 5 
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Thus, the initial assignments are possible, since the two series agree up to the 
assignment degree t = 3. The discrepancy degree at this point is d = 5, so there are 
just two possible ways of extending the sequences: (i) the a-b-assignment a3 = b3 = 

4; (ii) the a-assignment a3 = 5. 
If we choose (i), we obtain the coefficients in Figure 5 above. (Note that none of 

the coefficients of the terms up to and including the assignment degree are changed 
by later assignments.) Here t = 4, while d is still 5. Thus, the next assignment 
a4 = 5 is forced, giving the new coefficients (Figure 6): 

k 0 1 2 3 4 5 6 7 k ....... 7 8 
a (4) 1 1 1 2 3 4 5 6 a (5) ....... 7 9 

A(3) 1 1 1 2 3 4 5 7 (3) ....... 7 8 

FIGURE 6 FIGURE 7 

Once again there are two possible assignments: (i) a5 = b4 = 6; (ii) a5 = 7. We will 
end this example by following (ii) two more steps. 

With a5 = 7, we obtain the series in Figure 7 (only the necessary coefficients are 
shown), so the next assignment b4 = 8 is forced. We then obtain Figure 8, where we 
list only the coefficients from t = 8 to d = 15: 

k 8 9 10 11 12 13 14 15 

a(5) 9 11 14 17 21 25 30 36 

#(4) 9 11 14 17 21 25 30 35 

FIGURE 8 

Here we unexpectedly have six equal coefficients at degrees above the assignment 
degree but less than the discrepancy degree 15. The search therefore breaks into 
seven possible cases at this point. 

Example 3. To illustrate a dead end, we return to Example 1 with a, = 2, a2 = 3, 
a3 = 5, b, = 2, b2 = 5 and the coefficients given in Figure 9: 

k 0 1 2 3 4 5 6 7 k 5 6 7 
a(3) 1 0 1 1 1 2 22 a(4) 2 3 2 

A3(2) 1 0 1 1 1 2 2 3 (3) 2 3 4 

FIGURE 9 FIGURE 10 

Here there are the two choices: (i) a4 = b3 = 6; (ii) a4 = 7. The first gives Figure 10 
above. Since t = 6 and d = 7 and the difference in the coefficients at degrees 7 is 2, 
we have reached a dead end and no further assignment can be made. 

It should be clear from the preceding example that the actual tree of assignments 
that extend a given starting pair consists of the degrees at which the assignments are 
made. Trees are presented in the row-indented form of Figures 1-3, where dashes 
connect a- or ab-assignments and an asterisk follows a b-assignment. This is 
illustrated by the complete search tree (Figure 11) for the initial sequence a1 = 1, 
a 2 = 6. The finiteness of this tree proves that there is no R.P. beginning in this way. 
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The tree in Figure 11 shows that all branches end (arrive at a contradiction) by 
degree 40. If one were therefore to follow the proof by actually computing the series 
in (3) and (4) along all the branches, he would only have to deal with the terms of 
the series (mod x4). In general, for any initial sequence, one does not know in 
advance how long the branches of the search tree will be; however, a great many 
starting sequences can be eliminated by computing (mod x50) or (mod x200), as we 
have found by experience. Any short starting sequence that can be extended so that 
the series in (3) and (4) agree out this far is a very good candidate for a true R.P. 

1-6-7-8 -9 
8-9-10-11-12-13-14-15-Ib-17-18-19 

19-20-21-22-23-2q-25-26-27-28-29-30*31-32-33 
33-34 
34-35 

32-33*34a35 
33*34-35 

35-36 
3b 

18-19-20-21 30*31*32* 
20-21-22 29 

22-25 -2 4-25 
25-26-27-28-29-30-3 1 -32-33-34 

3 3-3 4 
32-33-34 

34-35-36* 
35 

33-3u*35 
34*35 

19-20-21-22 31-32*33-34* 
22 34*35 

21- 2 32*33* 
22-23-24-25 30-31*32*33*34*35-36* 
23-24-25 31* 

25-26 
26-27-28-29-30-3 1-32-33-34-35-36-37-38 

36-37-38 
20-21*22-23 38-39 

23-2* 39 
21*22*23-24 34-35*36-37*38 

24-25 37*38*39 
25 33-34-35*36-37-38 

17-18*19-20 38 
20-21-22 37-38 
aI-22-23-2q 38-39 

23-24 39 
18.1920Q*21-22 35*36*37*38*39 

10-l l-12-13 22-23 34 
1 3 -14- 15 -1 6 -17 - 18 -19 3 1 -32*233*234 * 

17-18-19-20-21 
20-21 -22-23-24 

22-23-24-25 
25-26 

24-25-26 
26-27-28 

25-26-27-28 
27-28* 

26-27-28* 
28*29-30-3 1 

27 
19-20-21-22 

22 
2 1-22 
22-23-24-25 

25 
23-24*25-26 

26-27-28 
20-21*22-23 

23-2-'-25 
21 *22*Z3-a2f 

2 J+- 2 S 
2S-26 

FIGURE 11. Complete Search Tree for a1 = 1, a2 = 6 
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12-13-14 
14-15-16-17-18 

17-18- 19-20 
19-20*21-22-23-24-25 

23-24-25 
25-26-27 
26-27-26-29-30 

13-14-15-16 30-31 
15-16-17-18 28-29*30-31 

17-18-19-20-21 31-32 
19-20-21 32-33-34-35-36 

21-22-23-24 35-36 
24-25-26-27 

27-28-29-30 *31-32 
22-23*24-25-26 

26 
25-26 
26-27-28 

14-15-16 27-23-29-30 
16-17-18 29-30. 
17-1e-19-20 

19-20-21-22 
21-22-23-24-25 

25 
23-24*25-26-27 

26-27-28-29 
15-16*17-18 28-29-30-31 
16*17-18 30-31 

18-19-20 
19-20-21 

21-22-23-24-25-26-27, 
2S-26-27-28-29 

28-29-30-31 
30-31-32 

32-33 
27-28-29-30 

30 
29-30 
30-31-32 
31-32-33 

33 
?8-29*30-31 

31 
29*30*31-32 

32 

FIGURE 11 (Continued) 

The four new R.P.'s were discovered by computing (mod x150) (this power is an 
input parameter to the program) and finding agreement in the two series up to this 
point. Further computation showed that the series agreed up to degree 200. We 
concluded then that it was highly likely that we were dealing with the beginning of a 
true R.P. When the first differences of the ai and b1 sequences were computed, in 
order to try to recognize the sequences, it was apparent that the sequence {ail was 
periodic (mod 20). The conjectured form of the four identities could then be readily 
written down. Shortly thereafter, it was discovered that these conjectured identities 
were derivable from four identities already published in Slater and so were therefore 
true. 

One interesting "end effect" for a true R.P., when the calculations are made only 
(mod x N) for some N, is that bogus candidates sometimes appear that agree with the 
true R.P. up to just below degree N and then deviate a little from it. The bogus pair 
is due to a "fluttering" end effect which can easily be eliminated by raising the value 
of N automatically in the program by, say, 50 or so, and then recomputing the series 
(mod x N) for the larger value of N. 
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4. The Search Programs. A computer program named RAMAN was written to 
explore the search tree described in the previous section up to a prespecified 
maximum degree N. Typically N was 200, although it could be as large as 1500. 
Actually, three versions of RAMAN were developed. The first, RAMANI, is an 
interactive program which allows the user to choose the assignments. The other two 
programs search the tree automatically. They differ in that RAMAN2 searches each 
branch to its absolute dead end, or else to degree N, while RAMAN3 uses exclusion 
criteria to detect and abort a "hopeless" branch before it is actually searched to its 
end. 

The decision at each particular node of the search tree as to what the next 
assignment should be is based on a comparison of the coefficients on the right sides 
of (3) and (4). These coefficients grow quickly in size. So as to avoid unnecessary 
multiple-precision calculations, the coefficients were computed (mod 26) on our 16 
bit machine. This modular reduction was sufficient for our purposes, since only the 
difference of the coefficients aim) - 1Vn) is needed each time an assignment is made. 
Of course, this means we are actually searching for R.P.'s in which the coefficients of 
the series are taken (mod 216). Such modular R. P.'s are discussed in Section 6. 

All three versions of RAMAN use the same procedures to calculate the series in 
(3) and (4) modulo xN l. The method for computing the coefficients on the right 
side of (3) is based on the following inductive formula. 

PROPOSITION 4.1. Suppose aml = t. Then, 

(5) (a) a(m+l) = a(m) 0 < k < t, 

(b) a?m+l) = ajm) + alm+') k> t. 

In computing the right side of (4) we need the additional series 

n 00 

(6) H1 (1 Xi)-' = E P~'X 
j=1 k=0 

The coefficients pk are easily obtained by Proposition 4.1. We use them to compute 
the coefficients # un) in (4) as follows: 

PROPOSITION 4.2. Suppose bn~l = t. Then, 

(7) (a) pkn+l) - (n) 0 < k < t, 

(b) 3(n+l) = p(n) + p(n+1) k> t. 

The proofs of Propositions 4.1 and 4.2 involve straightforward series manipula- 
tion, and are left to the reader. 

Now, when we reach a dead end in the search, we must be able to "back up" the 
series coefficients, in order to try other paths of the search tree. To obtain 'a1m1) 

from a(m), we simply solve for a(ml) in (5), where m is replaced by m - 1. 

PROPOSITION 4.3. Let m > 2 and am = t. Then, 

(8) (a) a (m-1) = a(m) 0 < k < t, 

(b)a (m-1) a ,,(m) a ,,(m) Lrk 



740 RICHARD BLECKSMITH, JOHN BRILLHART AND IRVING GERST 

Similarly, from (7) we derive 

PROPOSITION 4.4. Let n > 2 and bn = t. Then, 

(a) /(n-1) = f(n) O < k < t, 

(b) (3n-1) = -(n) p(-n) k > t. 

Corresponding to the current values of m, n, and the sequences {a }mL, {b })=l, 
all three versions of RAMAN store the current values of the series coefficients aim), 

j(nn) 
and P(n ) in the arrays a {ak}=O f3 {f k}kO, and p {Pk}k=o, respec- 

tively. For the next assignment am = t, RAMAN updates the array a by implement- 
ing (5), which involves a successive shifting and adding of the array a to itself up to 
index N. When backing up, RAMAN uses (8) and (9). Note that the iteration 
specified in (8b) and (9b) must be performed in decreasing order from k = N down 
to k = t to prevent "writing over" entries prematurely. 

We now discuss the three versions of RAMAN. The interactive program 
RAMANI computes the coefficients in (3) and (4) by Propositions 4.1 through 4.4, 
and displays these to the user. The coefficients ak and P3k appear in two rows on a 
terminal screen inside a "window" centered about the first discrepancy in coeffi- 
cients. (The window size is specified at the beginning of the run and is usually taken 
to be 10.) At this stage the computer asks the user to make one of the following 
decisions: 

1. Continue the search by choosing a new assignment degree. 
2. Back up the series to a previous degree d, i.e., eliminate all assignments past 

degree d and recompute the coefficients in a and i accordingly. 
3. Print out a copy of a and I. 

4. Stop. 
Incidentally, RAMANI automatically performs forced assignments up to the assign- 
ment degree that was input. If it detects an unresolvable discrepancy before it 
reaches the assignment degree, then it outputs an error message. 

The second program RAMAN2 did the tree search automatically and at high 
speed. In addition to the arrays a, I, and p, this program uses two "history" arrays 
{di } 1 and {f1}i ~. Here di is the ith assignment degree and fi is the type of 
assignment made at degree d, according to the rule: 

-1, for an a-assignment, 

fi 0 ?, for an ab-assignment, 
1, for a b-assignment. 

We now give in some detail the search method employed by RAMAN2. 

ALGORITHM 4.5. Given maximum degree N and initial sequences { a }To,, {bj })no. 

Find all pairs {a }i m1, {bj}>n=l which satisfy (1) modulo xNl. 

I (Initialize variables) 
1. Input N, { ai)}l, { by} no1 
2. Put t = max{ amo, bno }. (Here we assume that the initial sequences satisfy (1) 

(mod xt' 1).) 
3. Set m = mi, n = n0, and r = 0. 
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4. Compute the coefficient series a, f, and p corresponding to {a1}'L and 

{ by }> = by repeated use of (5) and (7). 
II (Search Module) 

1. If t > N, then a solution has been found up to degree N. In this case, output 
the pair {ai })1, {bj} '1, then go to IV. 

2. Increment t by 1. 
3. Set 8 = at - ir 

4. (Check for a dead end.) If ISI > 2, go to IV. 
5. (Update the history arrays.) Increment r by 1. Set dr = t, fr = S. 

III (Assignment Module) 
1. If 8 < 0, increment m by 1 and use (5) to update a. 
2. If 8 > 0, increment n by 1; use Proposition 4.1 to update p and (7) to update 

3. Go to II. 
IV (Reverse: Backtrack in the Tree Search) 

1. If r = 0, stop; all paths of the finite search tree have been examined. 
2. Set t = dr, 8 = Jr. 

3. If 8 < 0, decrement m by 1 and use (8) to back up a. 
4. If 8 > 0, decrement n by 1; use Proposition 4.3 to back up p and (9) to back 

up A. 
5. Decrement r by 1. 
6. If 8 = 0, go to II. Otherwise go to IV. 

In implementing this algorithm, an input parameter AN is specified along with the 
maximum degree N, so that RAMAN2 outputs all sequences { a1 }im {b,}> j which 
satisfy (1) modulo xN?1 and which can be extended to sequences which satisfy (1) 
up to the higher degree N + AN. Typically, AN was about 50. This technique 
eliminated the "fluttering" end effects mentioned at the end of Section 3. In 
addition to any pairs that might have been found in the search, the program outputs 
final statistics on the number of assignments, dead ends, vertices, and paths, along 
with the maximum degree reached. These give a rough idea of the structure and 
complexity of the search tree. For many initial starts, RAMAN2 found that every 
branch of the search tree dead-ended before degree N. In such cases, a simple tree 
structure or a repeating pattern in the output of the search program, suggests 
theoretical nonexistence proofs. An example of this is Theorem 5.3 in the next 
section, where values of s > 7 gave almost identical search trees. 

The other automatic search program, RAMAN3, is an "early abort" version of 
RAMAN2, which uses exclusion criteria to avoid going all the way to the end of a 
hopeless branch. 

Example 4. Let al = 10,..., al0 = 19 and b, = 10, b2 = 22. Then the ai'0), 3,2) 

coeffients of the series in (3) and (4) are 

k 20 21 22 23 24 25 26 27 28 29 30 

a k =ak) 1 1 2 2 3 3 4 4 5 5 5 

fAk =#2 1 1 2 2 3 3 4 4 5 5 6 

FIGURE 12 
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Here the assignment degree is 22, and the discrepancy degree is 30. By the search 
method described in Section 3, we have 8 possible choices at this point: 7 ab-assign- 
ments at degrees t = 23,.. ., 29, or else the single a-assignment at degree 30. Note, 
however, that 2akXk begins 1 + x10 + - . By (5), assigning all to be any value 
from 23 to 29 cannot change the coefficient a30 = 5. On the other hand, an 
assignment of b3 at any degree 23 to 29 will increase f830 = 6 by at least 1. Thus, 
each of the 7 ab-assignments will dead-end by degree 30. 

RAMAN3 was sophisticated enough to recognize these "doomed" branches. For 
Example 4, it would only assign all = 30, whereas RAMAN2 would examine all 8 
branches. Of course, this required a more complicated code, and therefore was only 
of value for long-running cases. RAMAN3 also provided a check on RAMAN2 
since in all cases checked the results of these independent programs agreed. 

Finally, a fourth program TREE was written which uses special output of 
RAMAN2 to produce a visual display of the search tree in the indented format of 
Figure 11. 

5. A Nonexistence Theorem. An examination of Figure 1 shows that there are 
known R.P.'s starting with al = 1 and a2 = 2, 3, and 4, but none for a2 > 4. By 
computing the trees for some of these higher values of a2, it became clear that their 
structure was sufficiently simple and similar that a general theoretical nonexistence 
proof could be made. 

Before undertaking this proof, we first establish some useful lemmas that relate to 
the equation 

00 00 

(10) l (1 xai) = 1 + a, a k, 
i=n k=1 

where an < an+1 < ... is a sequence of positive integers. The proofs of the 
following lemmas depend on the fact that ak = ak(n) is the number of partitions of 
k into the parts an, an +1. .. 

LEMMA 5.1. For each k, 1 < k < 2an- 1, ak = 0 or 1. 

Proof. The smallest integer having a partition into at least two parts is clearly 
2an = an + an. Hence, there is at most one partition for each k in the interval 
[1, 2an - 1]. 

LEMMA 5.2. Suppose an is even and let am, m > n, be the first odd term in the 
sequence {ai}. Then ak=OorIfor eachodd k, where A k k<am an. 

Proof. The smallest odd number having a partition into at least two parts is clearly 
k = am + an- 

THEOREM 5.3. There is no Ramanujan Pair with a1 = 1, a2 = S, s > 5. 

Proof. A comparison of the two sides of the equation 
00 o 00 X b 

(11) (1 - X)(1 - XS) (3 - 
) 1 (1 - X)(1 - X2) ... (1 - XJ) 

yields successively that b, = 1, b2 = s, and b3 > s + 1. We now consider two cases, 
depending on the parity of s. 
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Case 1. s even. Put s = 2r, r > 4. (We will handle s = 6 separately.) Multiplying 
(11) through by (1 - x)(I - xS) we obtain the equation 

00 

1- (I - Xai)- 

i=3 

(12) =1 + X2r+2 + x2r+4 + ...+X4r-2 

+Xb3( ? + X2 + X3 + X4 + x? + 2X6 + X7 +?2x+?2x9+? ) 

-X b3+2r(I + x2 + X3 + ___) + 

Let am be the first odd term in the sequence a3, a4,. (Not all the terms ai, 
> 3, can be even, for then the coefficients of the odd powers in the series expansion 

of the L.H.S. of (12) would all be 0.) We have am > b3, since all the preceding 
powers of x on the right of (12) are even. If b3 is odd, then am = b3 and we find that 
the coefficient of the term xb3+6 on the right of (12) is > 2. This contradicts Lemma 
5.2, since b3 + 6 < am + a3. On the other hand, suppose b3 is even. Then the 
coefficient of the term xb3 + 9 is > 2, again contradicting Lemma 5.2, since b3 + 9 < 
am + 9 < am + a3. (Note that if r = 4, the terms with negative coefficients on the 
R.H.S. of (12) do not affect the xb3+9 term.) 

The remaining part of this case, s = 6, is contained in the complete search 
tree-which is finite-that is given in Figure 11. For this proof to be convincing, it 
is necessary for the reader to start with a, = 1 and a2 = 6 and trace through the 
alternatives detailed in the tree to check that it is complete and correct. We prefer 
this mode of proof to an unnecessarily complicated theoretical proof. The graphic 
proof is concise and easy to verify, especially with an interacting program. 

Case 2. s = 2r + 1, r > 2. Again, with b1 = 1, b2 = s, and b3 >s + 1, we 
multiply (11) through by (1- x)(- X2r+l), obtaining the congruence 

00 

(1 - Xai)l 
i=3 

)1 _x2r+1 +(x2r+- X4r+2)(1 + X2 + x? + ... +X 4) 

(13) +?(Xb3 - X2r+1+b3)(1 + X2 + X4 + _ _ _ )(1 + X + X6 + _ _ ) 

- 1?+ (x2r+3 + X2r+5 + ...+X4r+5) + Xb3( + X2 + X3 + ) 

-X4r+2 - x4r+4 - X2r+l+b3 - X2r+3+b3 + ***(mod x ) 

The minimal choice, b3 = 2r + 2, produces on the right the leading five terms 
1 + x2r+2 + x2r+3 + X2r+4 + 2x2r+5, which cannot be balanced by any choice of 
a's on the left because of the coefficient 2. Since the assignment b3 = 2r + 3 would 
also produce a coefficient 2 for X2r+3 on the right, we must have b3 > 2r + 4. But 
this forces the assignment a3 = 2r + 3. Multiplying (11) through by 1- Xa3 gives 

00 

ft(1- Xa)-1I + X2r+5 + x2r+7 + +X4r+5 + Xb3(1 + X2 ?X3 ) 
i=4 

-x4r+2 X 4r+4 - X2r+l+b3 + (mod X4r+6). 

Now the minimal choices b3 = 2r + 4 and b3 = 2r + 5 again lead to a contradic- 
tion by the reasoning above, so we must have b3 > 2r + 6 and a4 = 2r + 5. 
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Continuing in this way, we finally reach the congruence 
00 

(14) ft (1_Xa)-l_1 + X4r+3 + X4r+5 + Xb3( + X2 + X3 + ) 

i=r+3 

-x4r+2 -x4r+4 + (modXwr+6 

where b3 > 4r + 2, in which the term of smallest degree on the right of (14) is 

-x 4r+2, which forces the assignment b3= 4r + 2. But then the coefficient of X4r+5 

is 2, a contradiction. E 

6. Modular Ramanujan Pairs. As mentioned in Section 4, in our search for R.P.'s, 
the coefficients a(m), p(n) in (3) and (4) were all computed (mod 216). This inspires 
the following 

Definition 6.1. Given M > 2. Two finite or infinite increasing sequences** { ai }r=', 

{ bj, }= 1 in N is called a Ramanujan Pair modulo M if 

r S 

(15) (1 - xai)-l 1 + E xb"/(x)j (modM), 
i=l j=1 

where the coefficients of the series on both sides of (15) are reduced modulo M. 
Thus, RAMAN actually searches for R.P.'s (mod 216). It is clear that if { a i}, { b} 

is an R.P., then it will also be an R.P. (mod M) for any M > 2. Consequently, the 

nonexistence of an R.P. (mod 216) implies the nonexistence of the ordinary R.P., i.e., 
nonexistence arguments using RAMAN are valid. Conversely, RAMAN will cer- 

tainly find the (mod 216) "image" of a genuine R.P. Still, it is possible-although 
highly unlikely-that RAMAN could find the beginning of a modular R.P. (mod 216) 

which is not the image of an ordinary R.P. This possibility raises the general 

question: For which M > 2 do there exist R.P.'s (mod M) which are not ordinary 
R.P.'s? This question is answered affirmatively for M = 2 in Theorem 6.2 and for 
M = 3 in Theorem 6.3, following which, the case for M > 4 is discussed. 

Let Y be the set of all finite or infinite increasing sequences of positive integers. 
We now show that there exist infinitely many R.P.'s (mod 2). 

THEOREM 6.2. For any a e 5, there exists a unique sequence b e Y such that a, b 
is an R. P. (mod 2). The map T: 5"-* 5" given by T(a) = b is a byection. 

Proof. For a = {a } G1e5"(reN or r= oo), let 
00 r 

(16) a(x) = ak xk H (1 - Xa) (mod 2), 
k=O i=l 

where ak e {0, 1), k > 0. We describe an inductive algorithm for obtaining b = 

{bj}j=> for some s (possibly s= oo) such that a, b is an R.P. (mod 2). First set 

b, = a1, so a(x) = 1 + xbl/(- x) (mod xbj+l, 2). Then assume inductively that 
b1 < b2 < ... < bk have been obtained so the congruence 

k 

(17) a(x) 1 + , xbk/(x)1 (mod2) 
1=1 

** Here r and s can be positive integers or oo. 
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holds modulo xbk+1. If, in fact, (17) is true, then take s = k and b = {b,. .., b }. 
Otherwise, take bk+1 to be the first power for which the coefficients in (17) disagree 
(mod 2). Clearly, bk+ 1 > bk and 

k+1 

a(x) 1 + E xbi/(x)1j (mod xbk+l1 2). 
j=1 

In this way we generate b. If the process continues indefinitely, then s = oo. 
It is easy to show that the b sequence of an R.P. a, b modulo M is uniquely 

determined. Conversely, a is also uniquely determined from b, so the map T: a -> b 
is 1-1. To see that X is onto, observe that given b e Y, we can use a procedure 
similar to the above algorithm to generate the corresponding a. E 

Theorem 6.2 shows that modulo 2, a or b can be any finite sequence. Considering 
the importance of finite R.P.'s which was seen earlier, we ask: 

Do there exist finite sequences { a,}7L and { bj }>n1, other than those of Theorem 
2.2, which satisfy (15) for some M > 2? 

The search method of Section 3 can be modified to search for R.P.'s (mod M). 
Suppose that { a } fL {bj}= satisfy congruence (15) modulo Xam_+ 1. (Here assume 
be < am.) Use (3) and (4) to obtain the coefficients aim), ,(n). Then we define 
dM = dM(m, n), the discrepancy degree (mod M), to be the first index k for which 
a(t) # /3(n) (mod M). As in Section 3, we can make the following assignments: 
am+ = b = t for some t, am < t < dM; am+l = dM if am)-fd) --1 

(mod M); be 1 = dM if a(m) -B (n) = 1 (mod M). This process generates the search n+1 ~dM dM 

tree modulo M. 
Now suppose M = 3. For any integer k > 0, certainly a(m)- /3(n) -1, 0, or 1 

(mod 3). Thus, since the discrepancy is never 2, the search tree (mod 3), once started, 
can never dead-end! This proves 

THEOREM 6.3. Let {a}m 1, {b1}>b . be any pair of finite sequences in 5Y which 
satisfy (15) with M = 3, up to degree max{ am, be}. Then {a }m1, { bj} I'1 can be 
completed to an R. P. (mod 3). 

Example 5. In Example 3 in Section 3, the coefficients a(4) and /3,(3), 0 < k < 7, 
are shown in Figures 9 and 10. Since 'I - /3(3) = 2 - 4 = -2, the search method of 
Section 3 dead-ends at this point. Modulo 2, however, these coefficients agree at 
degree 7, while modulo 3, we are forced to assign b4 = 7. 

We now state two conjectures, relating to the modular R.P.'s for M > 4, which 
have emerged from the considerable computing we have done. 

Conjecture 1. There exists a B E N such that for every pair {aim} 1, {b >j)' of 
increasing sequences in N for which a(m) = /3(n) 0 < k < max{ am, bn}, we have 
a(,) - d(n)l < B, where d = d(m, n) is the discrepancy degree. 

The next example shows that B > 5. 
Example 6. Let {ai} 1 = {6,7,...,34, 35, 41, 42) and {bj}91 = {6, 12, 18, 24, 

30, 38, 39, 40, 41). Then the coefficients a(22) and P (9) agree up to degree 42, while 
-(22)f_(9) = 245 - 250 = -5. Here the search for an ordinary R.P. ends at degree 

43. But for M= 4, 5, and 6, note that the search for an R.P. (mod M) has "new 
life" at this point. The reprieve is only temporary, however, as the search trees 
modulo M dead-end by degrees 74, 47, and 44 for M = 4, 5, and 6, respectively. 
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As a second example, we consider the search tree beginning a, = 1, a2 = 6. This 
tree, displayed in Figure 11, has 465 vertices, 136 paths, and the highest degree 
reached is 39. Modulo 5, the search tree extends to degree 44, with 11 more vertices 
and 2 more paths, while the tree diagram (mod4) is considerably more elaborate: 
1381 vertices, 357 paths, and maximum degree 93. Thus, the search trees modulo 
M = 4 and 5 that begin with a, = 1, a2 = 6, although more complicated than 
Figure 11, are nonetheless finite. We are led to make 

Conjecture 2. For M > 4, the only R.P.'s (mod M) are those derived from R.P.'s 
by considering them (mod M). 

Observe that Conjecture 1 implies Conjecture 2 for M > B + 2. 

7. A Parity Theorem. Since the coefficients of the series we have dealt with in this 
work were computed (mod 216), it was simple to examine the parity of the coeffi- 
cients of the power series for the new R.P.'s. Two of these possessed recognizable 
patterns which could be proved using Jacobi's triple product formula. In this 
theorem we will let I= {n E N: n + 1, +2, ?5, ?6, ?8, ?9 (mod20)} and 
J= n E N: n + 2, 3, 4 +5, +6, ?7(mod20)}. 

THEOREM 7.1. 

1 00 

(18) 1 - 1 + E (xn(5n-3)/2 + Xn(5n+3)/2) (mod 2) 
neI 1 n=1 

and 

00 

(19) 1 -1 + E (Xn(5n-l)/2 + Xn(5n+1)/2) (mod 2). 
nEJ X1 n=1 

Proof of (18). We have (mod 2) that 

00 00 

L = E (-1) nX n(n+3) 1 + E [ Xn(5n-3)/2 + Xn(5n+3)/2], 

n=-oo n=1 

so by Theorem 355 in [8, p. 284], 

00 

L H [l (1 + X5n+l)(1 + X5n+4)(1 + x5n+5) 
n=O 

- l (1 + x~n+1)2(1 + X~n+4)2(l + X~n+5)2 

n=O (1 + X5n+T)(1 + X5n+4)(1 + X5n+5) 

- (1 + X10n+2)(1 + X'0n+8)(1 + x10n+10) 

n=O (1 + X5n+T)(1 + X5n+4)(1 + X5n+5) 

But 

fl (1 + xn0+'10) ? 1 

n=O (1 + X ) n=O (1 + Xl'0+S) 
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so 

L = I l (1 + x10n+2)(1 + x10n+8) 

n=0 (1 + X5n+l)(1 + x5n+4)(1 + x10n+5) 

= I0I (1 + XlOn+2)2(1 + Xlon+8)2 
n=O (1 + x10n+2)(1 + xl0n+8)(1 + x5n+l)(1 + x5n 4)(1 + x10n 5) 

00 (1 + X20n+4)(i + X20n+16) 

n.O (1 + X5n 4)(1 + X5n+l)(1 + x10n+2)(1 + xl0n+8)(1 + X10n+5) 

But 

X (1 + X20n+4) =? 1 

A=06 (1? +X5n4) ' (1 + x20n+9)(1 + X20n+14)(1 + X20n+19) 

and 
00 (1+ x20n+16) f 1 

n=O (1 + -51~1) n=O (1 + X20n+1)(1 + X20n+6)(1 + X20n+11) 

which imply that L n e u/(I - 

The proof of (19) is similar, using Theorem 356 in [8]. El 
Remark. There are infinitely many modular results obtainable from special cases 

of the Jacobi triple product formula by the method used above. We will give here the 
simplest one, the well-known result, derived from Theorem 353 in [8]: 

00 1 00 

(20) 1 _ 2n - X n(3n+1)/2 (mod 2). 
n=O X2+ =o 

An outstanding problem in this direction is to find a simple rule that gives the 
parity of the partition function p(n), possibly using two or more products (mod 2), 
whose parity conditions are known, and whose product is H 1 17/(1 - x n). (See 
[12].) 

8. Combinatorial Interpretations. The well-known combinatorial interpretations of 
the Rogers-Ramanujan identities (pairs 3 and 4 in Table 1) can be extended to the 
other six Ramanujan pairs (5-10 in Table 1). In order to list these partition 
interpretations concisely, we introduce the following notation. Fix r = 3,..., 10 and 
let {ai}, {bj} be the rth Ramanujan pair listed in Table 1. We then define pr(n) 
and qr(n) by 

00 00 

(21) H (1 - 
Xai) = , pr(n)xn 

i1l n=O 

and 
00 00 

(22) 1 + Y xbi/(x)j = E qr(n)x . 
j=1 n=O 

Of course, Pr(n) = qr(n). The interest lies in the interpretation of Pr(n) and qr(n). 
That of pr(n) is obvious from the product form of (21). For example, p5(n) 
enumerates the number of partitions of n into parts congruent to + 1, ? 4, ? 6, or 
? 7 (mod 16). To interpret qr(n), write a partition of n in the form n = cl + c2 
+ * * * +cm, where the Ck's are in decreasing order of magnitude, i.e., Ck > Ck+l. In 
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general, the results for the various cases impose minimal difference restrictions on 
certain of the Ck's, as summarized in the following 

THEOREM 8.1. Let { ai }, { bj I be the rth Ramanujan Pair listed in Table 1. Then, 

q,(n) enumerates the partitions n = c1 + c2 + + cm satisfying the following condi- 
tions: 

r = 3: Ck Ck+ 1 > 2, 1 < k < m -1; 

r = 4: Ck-Ck+1 > 2, 1 < k < m-1, and cm > 2; 

r = 5: C2k-C2k?1 > 2, 1 < k <[ 2 and if m is even, Cm > 2; 

r = 6: C2k - C2k+ l > 2, 1 < k < [2 2] Cm> 2, and if m is odd, 

Cm-1 > Cm; 

r =7: c~ ~+, 1 < k < [m2 ] r=: C2k > C2k?19 

r =8: C2k-1 > C2k, [2] 

r = 9: C2k-1 > C2k 1 < []and ifmis odd, Cm-l > Cm; 

r = 10: C2k > C2k+1 1 < k < m , and cm > 2. 

When r = 3 and 4, Theorem 8.1 gives us the familiar interpretations of the 
Rogers-Ramanujan identities. As discussed in Hardy and Wright [8, pp. 290-291], 
the translation of q2(n) into partition theory is based on the identity bn = n2 = 1 + 
3 + - +(2n - 1), while that of q4(n) uses the equation bn = n(n + 1) = 2 + 4 
+ - + 2n. Following the method in [8], the results in Theorem 8.1 for the other 
cases are obtained by writing the exponents b2n-j and b2n for each R.P. as a sum of 
2n - 1 and 2n terms, respectively. Thus, for r = 5, we have 

bn = 2n2 - 1 

= 1 + 3 + 3 + ? (2n- 3) +(2n- 3) +(2n- 1) +(2n- 1) 

and 

b2, = 2n(2n + 1) = 2 + 2 + +(2n -2) +(2n -2) +(2n) +(2n), 

while the proof for r = 10 uses 

b2n-1 = n(n + 1) = 2 + 2 + 3 + +(n-1) +(n-1) + n + n 

and 

b2n = n(n + 3) = 2 + 2 +3+ +n + n +(n + 1) +(n 1). 

Observe that the combinatorial interpretation for the Hirschhorn R.P. (r = 5) is a 
generalization of the Rogers-Ramanujan theorems in that a minimal difference of 2 
is required of every other pair of terms and minimal part 2 is required only when 
there is an even number of terms in the partition. 
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The interpretation in Theorem 8.1 for r = 8 first appeared as B. Gordon's 
Theorem 7 in [7], while the result for r = 7 is equivalent to W. Connor's Proposition 
4 [5]. In that same paper, Connor gives different partition interpretations for r = 9 
and 10 than those in Theorem 8.1 [cf. Propositions 2 and 3]. The results for identities 
r = 5 and 6, as far as we know, are new. 
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